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Abstract. Perturbation theory is used to examine the stochastic quantisation hypothesis 
for gauge field theory. The generating functional is found to be badly behaved. A simple 
modification to the hypothesis is suggested which leads to the Fadeev-Popov expression 
for the generating functional. 

1. Introduction 

Recently considerable attention has been paid to the similarities between Euclidean 
quantum field theory and the theory of functional stochastic differential equations. 
Both theories are characterised by their Green functions, i.e. averages of products of 
field variables. Parisi and Wu (1981) conjectured that it is possible to choose the form 
of the stochastic differential equation so that both theories produce the same Green 
functions. This leads to a new (the so-called stochastic) procedure for quantising fields. 

Stochastic quantisation presents several practical and conceptual possibilities not 
found in the functional integral formulation. For example the computer simulation 
of stochastic differential equations offers a new numerical technique in quantum field 
theory. Parisi (1981, 1982) has argued that this technique has better convergence 
properties than the more commonly used Monte Carlo simulation. Further work on  
algorithms for the numerical simulation of stochastic differential equations has been 
carried out by Drummond et a1 (1983) and Thomas (1984). 

The stochastic procedure can be used to quantise classical field theories which 
cannot be formulated in terms of a least action principle. Zwanziger (1981) made use 
of this fact to give a new covariant quantisation of the Yang-Mills gauge field. The 
subject of this paper is also gauge field theory but the analysis differs both technically 
and conceptually from Zwanziger's work. 

In the stochastic approach to gauge theory a random field Al (x ,  T )  ( p  Lorentz 
index, a group index) is defined over spacetime coordinates x plus an  additional 
timelike coordinate T. The evolution of the field with T is assumed to be governed by 
the Langevin equation 

where S[A] is the classical action of the Yang-Mills field continued into Euclidean 
space and W l  is a white noise field. For gauge invariant functionals G[A] of the 
gauge field Parisi and Wu postulated that 

7 - E  lim (G[A(x, 7)l)noise = (G[A(x)I)FT. (1.2) 

0305-4470/86/060929 + 07$02.50 @ 1986 The Institute of Physics 929 



9 30 A Thomas 

The subscript ‘noise’ denotes the ensemble average over the white noise field and ‘FT’ 
the usual quantum field theory vacuum expectation value. 

In order to verify equation (1.2) it is necessary to calculate ensemble averages of 
functionals of the gauge field. Zwanziger (1981) and Floratos and Iliopoulos (1983) 
evaluated these averages as functional integrals over a r-dependent probability density 
P[A(x, r ) ]  obeying the Fokker-Planck equation. A more direct approach based on 
the Ito stochastic calculus? is adopted here. 

For any non-anticipating functional F[A] of the field A:(x, T )  obeying equation 
(1.1) Ito’s theorem states that 

In particular the generating functional 

dxJ:(x)Az(x,.r) 
noise 

where J t  is a classical source field, is found to obey 

(1.3) 

(1.4) 

(1.5) 

Note that this equation only determines 2 up to a normalisation constant which is 
fixed by the initial condition Z ( T  = 0) = 1 and the boundary condition Z [ J  = 01 = 1. 
In the next section perturbation theory is used to analyse the equation for the generating 
functional. 

2. Perturbation theory for the generating functional 

The gradient of the action can be written 

SS SS‘O’ SS‘” - + g y + g  - 
6AZ SA: SA, SA:’ 

where g is the coupling constant. On the right-hand side the first term is linear in the 
gauge field, the second quadratic and the third cubic. Equation (1.5) for the generating 
functional is therefore a third-order differential equation. However if the coupling 
constant is small the equation can be regarded as first order with the higher derivative 
terms being small perturbations. 

Writing 

50 

z(T)= 1 gnZn(r), 
n =o 

substituting into equation (1.5) and equating powers of g gives 

(2.3) 

t For an introduction to the Ito stochastic calculus see Schuss (1980). 
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where 

and zero otherwise. This is a system of linear first-order differential equations. 

side of equation (2.3) in momentum space gives 
The solution is most easily achieved in momentum space. Writing the left-hand 

(2.4) 

where 

P A P )  = a,, - P,Py/P2. (2.5) 

Using the method of characteristics the partial differential equation (2.4) can be 
converted to an ordinary differential equation. Along the curve 

dJ;(P)/d.r =P2p,”(P)J%J), (2.6) 

equation (2.4) can be written as %-I d r  dpJ;(p)J:(-p)Z, = V‘,“+ Vi2’. (2.7) 

In equation (2.7) J ;  is to be regarded as a function of T (that given by equation (2.6)),  
i.e. by 

J”,P, 7 )  = ( P,,(P) exp(p2T) + P , P ~ / P ~ ) J ” , P ,  0). (2.8) 

The solution of the simple ordinary differential equation (2.7) is carried out by 
multiplying through by the integrating factor 

Using equation (2.8) the integrating factor is found to be 

I=exp(  - t  d p l , ( P ) ( P , , ( P ) + 2 P g . r / p ‘ ) l . ( - p ) )  (2.10) 

and the free field generating functional to be 

zo= e v ( +  J” d p J t ( p ) (  P,,(p)[l -exp(-2p’r)1+2p,p,T/p2)J:(-p)). (2.11) 

From equations (2.10) and (2.1 1 )  it is easily seen that the 2, do not have a stationary 
large T limit. This observation does not rule out Parisi and Wu’s postulate, equation 
(1.2), for gauge invariant functionals. It does, however, make comparison with the 
functional integral approach more difficult. The easiest case to consider is the free 
field, where it can be seen from equation (2.11) that any functional that can be built 
out of 

Aj2P,  T ) = P , ” ( P ) A ” ( P ,  7) (2.12) 

obeys the stochastic quantisation hypothesis. For the interacting theory the ratio of 
successive 2, is not necessarily small and it is difficult to decide if the series for Z is 
meaningful. 
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It is therefore interesting to consider modifications of the stochastic quantisation 
hypothesis such that the 2, have a stationary large T limit. The problem term in 
equations (2.10) and (2.11) is p , p , , ~ / p * .  This term arises because the operator P , , ( p )  
in equation (2.6) has a zero eigenmode. Two distinct ways of removing this problem 
term are possible: either equation (2.6) can be modified so that the operator P , , ( p )  
is replaced by a new operator without the zero eigenmode or equation (2.7) can be 
altered so that there is no contribution from the zero eigenmode. The first possibility 
has been explored by Zwanziger (1981). In the next section the second possibility will 
be discussed and shown to have similarities with the Fadeev-Popov construction in 
the functional integral formulation of gauge field theory. 

3. Projection operators and constraints 

A modification of equation (2.7) is required which allows a stationary propagator to 
be defined. The modified equation 

%- / dpJ:(-p)P,,(p)J~(p)Z,= 0 (3.1) d r  

satisfies this requirement because equation (2.6) can now be used to give 

The solution of this equation with the initial condition Z,( T = 0) = 1 is found, using 
equation (2.8) and its inverse, to be 

is the generating functional of the conventional free quantum field theory in the Landau 
gauge. 

By adopting the same procedure as in 0 1 it can easily be shown that equation (3.1) 
follows from the modified Langevin equation 

dAl(p ,  7 ) = p P v ( p )  (3.5) 

The generating function obeys 

and the equivalent of equation (2.7) is 
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where 

for n 2 N and zero otherwise. 
The evaluation of the right-hand side of equation (3 .7)  for general T is tedious. 

However it is easy to show by induction that the Zn have a large T limit independent 
of T. Assume that for n S M 

zn = Qn[l +O(exp(-p27))1 exp(f j’ d p ~ : ( - p ) p , . ( p ) , : ( p ) / p 2 ) ,  (3.8) 

where the Qn are polynomials in PFu( p ) J , (  p ) .  Using equation (3 .7)  gives 

Z ~ + i = e x p i  dpJ;(-p)J;(P)lP2 
I j ’  

x 1: dT[ [ah+,  +O(exp(-p2~))1 exp( -f 5 d p J ~ ( - p ) p , p J : ( r ) l p ’ ) ]  

(3.9) 
where QL+, is a polynomial in Ppv(  p ) J , (  p ) .  In equation (3 .9)  the exponential factor 
inside the T integration is independent of T (use equation (2.8)) and can be taken 
outside the integral. The integration of the polynomial QL+, with respect to T is easily 
achieved using equation (2 .6 ) ,  the result being another polynomial. Hence ZM+, has 
the same form as 2,. Equation (3.8) is true for n = 0 and hence by induction for 
all n. 

The large T solution of equation (3.6) is now simple. Set a Z / a T  and note the 
operator identity 

(3.10) 

which suggests the solution 

x exp( i J dp~ : (p )p , . (p )~ : (~ ) l~ ’ ) ,  (3.11) 

where N is a normalisation constant. 
Expression (3.1 1) for the generating functional differs from the Fadeev-Popov form 

in not containing the ghost term. The necessity of this term is demonstrated by the 
following argument. Multiplying equation (3.5) by the momentum vector p shows that 

d(p,A:(p, 7)) = 0. (3.12) 

Condition (3.12) partitions the ensemble of stochastic differential equations according 
to each member’s value of the variable c n  = p,AZ. In order to calculate averages it is 
therefore necessary to sum over all values of C O .  This can be achieved by functionally 
integrating with respect to c. The stochastic quantisation hypothesis must be modified 
to 

(3.13) 
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It is more convenient to change the variable in the functional integral from c to 
the group element U and write 

(3.14) 

However, for gauge invariant functionals the integrand on the right-hand side of 
equation (3.14) is independent of the group element U and the functional integral 
with respect to U can be factored out. The Feynman rules for the stochastic field 
theory can therefore be derived from the modified generating functional 

This expression can be written as 

(3.15) 

(3.16) 

The functional determinant can be written in terms of the Fadeev-Popov ghost fields. 
Combining equation (3.11) with equation (3.16) then allows the Feynman rules of the 
stochastic theory to be read off. 

4. Conclusion and outlook 

The Ito calculus has been used to study Parisi and Wu's stochastic quantisation 
procedure for gauge field theory and a differential equation has been derived for the 
generating functional. In the case of the Abelian theory (free field) this equation is 
exactly soluble and the stochastic procedure agrees with the functional integral 
approach in the Landau gauge. For the non-Abelian theory the situation is less clear 
cut. An attempt was made to solve the generating functional equation by doing 
perturbation theory about the free field. However this perturbation series approach 
cannot be justified because the series appears not to converge. A modified stochastic 
quantisation procedure was proposed which allowed a well defined perturbation theory 
analysis to be carried out. The modified stochastic procedure was then shown to agree 
with the Landau gauge functional integral formulation. 

An alternative to the generating functional approach adopted in this paper would 
be to use Ito's theorem to write down the equation of motion of the expectation value 
of a gauge invariant object. Perturbation theory could then be used to calculate this 
gauge invariant average in terms of averages of free field gauge invariant quantities. 
This procedure would reproduce the Landau gauge functional integral formulation 
minus the ghosts. 

The techniques developed in this paper can be applied to scalar field theory (Thomas 
1985). An interesting possibility is to derive a differential equation for the generating 
functional of connected Green functions. This generating functional could then be 
expanded either in powers of the coupling constant or in powers of Planck's constant. 
Both types of expansion are under active consideration. 
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